Метеорологические факторы в соматической патологии. Метеорологические факторы

Человек, находясь в условиях естественной внешней среды, подвергается влиянию различных метеорологических факторов : температура, влажность и движение воздуха, атмосферное давление, осадки, солнечное и космическое излучения и т. д. Перечисленные метеорологические факторы в совокупности определяют погоду.

Погода – это физическое состояние атмосферы в данном месте в определенный период времени. Многолетний режим погоды, обусловленный солнечной радиацией, характером местности (рельеф, почва, растительность и т. д.), и связанная с ним циркуляция атмосферы создают климат. Существуют различные классификации погод в зависимости от того, какие факторы положены в основу.

С гигиенической точки зрения различают три типа погоды:

1. Оптимальный тип погоды благоприятно действует на организм человека. Это умеренно влажные или сухие, тихие и преимущественно ясные, солнечные погоды.

2. Краздражающему типу относят погоды с некоторым нарушением оптимального воздействия метеорологических факторов. Это солнечные и пасмурные, сухие и влажные, тихие и ветреные погоды.

3. Острые типы погод характеризуются резкими изменениями метеорологических элементов. Это сырые, дождливые, пасмурные, очень ветреные погоды с резкими суточными колебаниями температуры воздуха и барометрического давления.

Хотя на человека влияет климат в целом, в определенных условиях ведущую роль могут играть отдельные метеорологические элементы. Следует отметить, что влияние климата на состояние организма определяется не столько абсолютными величинами метеорологических элементов, свойственных тому или другому типу погоды, сколько непериодичностью колебаний климатических воздействий, являющихся в связи с этим неожиданными для организма.

Метеорологические элементы, как правило, вызывают у человека нормальные физиологические реакции, приводя к адаптации организма. На этом основано использование различных климатических факторов для активного воздействия на организм с целью профилактики и лечения различных заболеваний. Однако под влиянием неблагоприятных климатических условий в организме человека могут происходить патологические сдвиги, приводящие к развитию болезней. Всеми этими проблемами занимается медицинская климатология.

Медицинская климатология – отрасль медицинской науки, которая изучает влияние климата, сезонов и погоды на здоровье человека, разрабатывает методику использования климатических факторов в лечебных и профилактических целях.

Температура воздуха. Этот фактор зависит от степени прогревания солнечным светом различных поясов земного шара. Перепады температур в природе достаточно велики и составляют более 100 °C.



Зона температурного комфорта для здорового человека в спокойном состоянии при умеренной влажности и неподвижности воздуха находится в пределах 17–27 °C. Следует заметить, что этот диапазон индивидуально обусловлен. В зависимости от климатических условий, местожительства, выносливости организма и состояния здоровья границы зоны термического комфорта для разных лиц могут перемещаться.

Независимо от окружающей среды температура у человека сохраняется постоянно на уровне около 36,6 °C и является одной из физиологических констант гомеостаза. Пределы температуры тела, при которых организм сохраняет жизнеспособность, сравнительно невелики. Смерть человека наступает при повышении до 43 °C и при падении ниже 27–25 °C.

Относительное термическое постоянство внутренней среды организма, поддерживаемое посредством физической и химической терморегуляции, позволяет человеку существовать не только в комфортных, но и в субкомфортных и даже в экстремальных условиях. При этом адаптация осуществляется как за счет срочной физической и химической терморегуляции, так и за счет более стойких биохимических, морфологических и наследственных изменений.

Между организмом человека и окружающей его средой происходит непрерывный процесс теплового обмена, состоящий в передаче вырабатываемого организмом тепла в окружающую среду. При комфортных метеорологических условиях основная часть тепла, вырабатываемого организмом, переходит в окружающую среду путем излучения с его поверхности (около 56 %). Второе место в процессе теплопотери организма занимает отдача тепла путем испарения (примерно 29 %). Третье место занимает перенос тепла движущейся средой (конвекция) и составляет примерно 15 %.

Температура окружающей среды, влияя на организм через рецепторы поверхности тела, приводит в действие систему физиологических механизмов, которая в зависимости от характера температурного раздражителя (холод или жара) соответственно уменьшает или увеличивает процессы теплопродукции и теплоотдачи. Это, в свою очередь, обеспечивает сохранение температуры тела на нормальном физиологическом уровне.

При понижении температуры воздуха возбудимость нервной системы и выделение гормонов надпочечниками значительно повышаются. Основной обмен и выработка тепла организмом увеличиваются. Периферические сосуды сужаются, кровоснабжение кожи уменьшается, тогда, как температура ядра тела сохраняется. Сужение сосудов кожи и подкожной клетчатки, а при более низких температурах и сокращение гладких мышц кожи (так называемая «гусиная кожа») способствуют ослаблению кровотока во внешних покровах тела. При этом кожа охлаждается, разница между ее температурой и температурой окружающей среды сокращается, а это уменьшает теплоотдачу. Указанные реакции способствуют сохранению нормальной температуры тела.

Местная и общая гипотермия способны вызвать ознобление кожи и слизистых оболочек, воспаление стенок сосудов и нервных стволов, а также отморожение тканей, а при значительном охлаждении крови – замерзание всего организма. Охлаждение при потении, резкие перепады температур, глубокое охлаждение внутренних органов нередко ведут к простудным заболеваниям.

При адаптации к холоду терморегуляция изменяется. В физической терморегуляции начинает преобладать расширение сосудов. Несколько снижается артериальное давление. Выравнивается частота дыхания и сердечных сокращений, а также скорость кровотока. В химической терморегуляции усиливается несократительное теплообразование без дрожи. Перестраиваются различные виды обмена веществ. Сохраняются гипертрофированными надпочечники. Уплотняется и утолщается поверхностный слой кожи открытых участков. Увеличивается жировая прослойка, а в наиболее охлаждаемых местах откладывается высококалорийный бурый жир.

В реакции приспособления к холодовому воздействию вовлекаются почти все физиологические системы организма. При этом используются как срочные меры защиты обычных реакций терморегуляции, так и способы повышения выносливости к продолжительному воздействию.

При срочной адаптации происходят реакции термической изоляции (сужение сосудов), понижения теплоотдачи и усиления теплообразования.

При длительной адаптации те же реакции приобретают новое качество. Реактивность понижается, но резистентность повышается. Организм начинает отвечать значительными изменениями терморегуляции на более низкие температуры внешней среды, поддерживая оптимальную температуру не только внутренних органов, но и поверхностных тканей.

Таким образом, в ходе адаптации к низким температурам в организме происходят стойкие приспособительные изменения от клеточно-молекулярного уровня до поведенческих психофизиологических реакций. В тканях идет физико-химическая перестройка, обеспечивающая усиленное теплообразование и способность переносить значительные охлаждения без повреждающего действия. Взаимодействие местных тканевых процессов с саморегулирующимися общеорганизменными происходит за счет нервной и гуморальной регуляции, сократительного и несократительного термогенеза мышц, усиливающего теплообразование в несколько раз. Повышается общий обмен веществ, усиливается функция щитовидной железы, увеличивается количество катехоламинов, усиливается кровообращение мозга, сердечной мышцы, печени. Повышение метаболических реакций в тканях создает дополнительный резерв возможности существования при низких температурах.

Умеренное закаливание значительно повышает устойчивость человека к повреждающему действию холода, к простудным и инфекционным заболеваниям, а также общую сопротивляемость организма к неблагоприятным факторам внешней и внутренней среды, повышает работоспособность.

При повышении температуры основной обмен, а соответственно и выработка тепла у человека снижаются. Физическая терморегуляция характеризуется рефлекторным расширением периферических сосудов, что увеличивает кровоснабжение кожи, при этом отдача тепла организмом увеличивается в результате усиления излучения. Одновременно увеличивается потоотделение – мощный фактор теплопотери при испарении пота с поверхности кожи. Химическая терморегуляция направлена на понижение теплообразования путем снижения обмена веществ.

При адаптации организма к повышенной температуре вступают в действие механизмы регуляции, направленные на поддержание термического постоянства внутренней среды. Первыми реагируют дыхательная и сердечно-сосудистая системы, обеспечивающие усиленную радиационно-конвекционную теплоотдачу. Далее включается наиболее мощная потоиспарительная система охлаждения.

Значительное повышение температуры вызывает резкое расширение периферических кровеносных сосудов, учащение дыхания и пульса, увеличение минутного объема крови с некоторым снижением артериального давления. Кровоток во внутренних органах и в мышцах уменьшается. Возбудимость нервной системы падает.

Когда температура внешней среды достигает температуры крови (37–38 °C), возникают критические условия терморегуляции. При этом теплоотдача осуществляется главным образом за счет потения. Если потение затруднено, например, при сильной влажности окружающей среды, происходит перегревание организма (гипертермия).

Гипертермия сопровождается повышением температуры тела, нарушением водно-солевого обмена и витаминного равновесия с образованием недоокисленных продуктов обмена веществ. В случаях недостатка влаги начинается сгущение крови. При перегревании возможны нарушения кровообращения и дыхания, повышение, а затем падение артериального давления.

Длительное или систематически повторяющееся действие умеренно высоких температур приводит к повышению толерантности к тепловым факторам. Происходит закаливание организма. Человек сохраняет работоспособность при значительном повышении температуры внешней среды.

Таким образом, изменение температуры окружающей среды в ту или иную сторону от зоны температурного комфорта приводит в действие комплекс физиологических механизмов, способствующих сохранению температуры тела на нормальном уровне. В экстремальных температурных условиях при срыве адаптации возможны нарушения процессов саморегуляции и возникновение патологических реакций.

Влажность воздуха. Зависит от присутствия в воздухе водяных паров, которые появляются в результате конденсации при встрече теплого и холодного воздуха. Абсолютной влажностью называют плотность водяного пара или его массу в единице объема. Переносимость человеком температуры окружающей среды зависит от относительной влажности.

Относительная влажность воздуха – это процентное отношение количества содержащихся в определенном объеме воздуха водяных паров к тому их количеству, которое полностью насыщает этот объем при данной температуре. При падении температуры воздуха относительная влажность растет, а при повышении – падает. В сухой и жаркой местности днем относительная влажность составляет от 5 до 20 %, в сырой – от 80 до 90 %. Во время выпадения осадков она может достигать 100 %.

Относительную влажность воздуха 40–60 % при температуре 18–21 °C считают оптимальной для человека. Воздух, относительная влажность которого ниже 20 %, оценивается как сухой, от 71 до 85 % – как умеренно влажный, более 86 % – как сильно влажный.

Умеренная влажность воздуха обеспечивает нормальную жизнедеятельность организма. У человека она способствует увлажнению кожи и слизистых оболочек дыхательных путей. От влажности вдыхаемого воздуха в определенной мере зависит поддержание постоянства влажности внутренней среды организма. Сочетаясь с температурными факторами, влажность воздуха создает условия для термического комфорта или нарушает его, способствуя переохлаждению или перегреванию организма, а также гидратации или дегидратации тканей.

Одновременное повышение температуры и влажности воздуха резко ухудшает самочувствие человека и сокращает возможные сроки пребывания его в этих условиях. При этом происходит повышение температуры тела, учащение пульса, дыхания. Появляется головная боль, слабость, понижается двигательная активность. Плохая переносимость жары в сочетании с повышенной относительной влажностью обусловлена тем, что одновременно с усилением потоотделения при высокой влажности окружающей среды пот плохо испаряется с поверхности кожи. Теплоотдача затруднена. Организм все больше перегревается, и может возникнуть тепловой удар.

Повышенная влажность при пониженной температуре воздуха является неблагоприятным фактором. При этом происходит резкое увеличение теплоотдачи, что опасно для здоровья. Даже температура 0 °C может привести к отморожению лица и конечностей, особенно при наличии ветра.

Низкая влажность воздуха (менее 20 %) сопровождается значительными испарениями влаги со слизистых оболочек дыхательных путей. Это приводит к уменьшению их фильтрующей способности и к неприятным ощущениям в горле и сухости во рту.

Границами, в пределах которых тепловой баланс человека в покое поддерживается уже со значительным напряжением, считают температуру воздуха 40 °C и влажность 30 % или температуру воздуха 30 °C и влажность 85 %.

В любом явлении окружающей нас природы существует строгая повторяемость процессов: день и ночь, прилив и отлив, зима и лето. Ритмичность наблюдается не только в движении Земли, Солнца, Луны и звезд, но и является неотъемлемым и универсальным свойством живой материи, свойством, проникающим во все жизненные явления – от молекулярного уровня до уровня целого организма.

В ходе исторического развития человек приспособился к определенному ритму жизни, обусловленному ритмическими изменениями в природной среде и энергетической динамикой обменных процессов.

В настоящее время известно множество ритмических процессов в организме, называемых биоритмами. К ним относятся ритмы работы сердца, дыхания, биоэлектрической активности мозга. Вся наша жизнь представляет собой постоянную смену покоя и активной деятельности, сна и бодрствования, утомления от напряженного труда и отдыха.

При резкой смене погоды снижается физическая и умственная работоспособность, обостряются болезни, увеличивается число ошибок, несчастных и даже смертных случаев. Изменения погоды не одинаково сказываются на самочувствии разных людей. У здорового человека при изменении погоды происходит своевременное подстраивание физиологических процессов в организме к изменившимся условиям внешней среды. В результате усиливается защитная реакция и здоровые люди практически не ощущают отрицательного влияния погоды.

Солнечная радиация и её профилактика

Самым мощным природным фактором физического воздействия является солнечный свет. Длительное пребывание на солнце может привести к ожогам различной степени, вызвать тепловой или солнечный удар.

Метеопатология. Большинство здоровых людей практически не чувствительны к изменениям погоды. Вместе с тем довольно часто встречаются люди, которые проявляют повышенную чувствительность к колебаниям метеопогодных условий. Таких людей называют метеолабильными. Как правило, они реагируют на резкие, контрастные смены погод или на возникновение метеоусловий, необычных для данного времени года. Известно, что метеопатические реакции обычно предшествуют резким колебаниям погоды. Как правило, метеолабильные люди чувствительны к комплексам погодных факторов. Однако существуют лица, плохо переносящие отдельные метеорологические факторы. Они могут страдать анемопатией (реакции на ветер), аэрофобией (состояние страха на резкие изменения в воздушной среде), гелиопаией (повышенная чувствительность к состоянию солнечной активности), циклонопатией (болезненное состояние на погодные изменения, вызванные циклоном) и т. п. Метеопатические реакции связаны с тем, что адаптивные механизмы у таких людей или недостаточно развиты, или ослаблены под влиянием патологических процессов.

Субъективными признаками метеолабильности являются ухудшение самочувствия, общее недомогание, беспокойство, слабость, головокружение, головная боль, сердцебиение, боли в области сердца и за грудиной, повышение раздражительности, снижение работоспособности и т. п.

Субъективные жалобы, как правило, сопровождаются объективными изменениями, происходящими в организме. Особенно чутко реагирует на перепады погоды вегетативная нервная система: парасимпатический, а затем и симпатический отдел. В результате появляются функциональные сдвиги во внутренних органах и системах. Возникают сердечно-сосудистые расстройства, происходят нарушения мозгового и коронарного кровообращения, изменяется терморегуляция и т. п. Показателями подобных сдвигов являются изменения характера электрокардиограммы, векторкардиограммы, реоэнцефалограммы, параметров артериального давления. Увеличивается количество лейкоцитов, холестерина, повышается свертываемость крови.

Метеолабильность обычно наблюдается у людей, страдающих различными заболеваниями: вегетативными неврозами, гипертонической болезнью, недостаточностью коронарного и церебрального кровообращения, глаукомой, стенокардией, инфарктом миокарда, язвенной болезнью желудка и двенадцатиперстной кишки, желчно- и мочекаменной болезнью, аллергией, бронхиальной астмой. Часто метеолабильность появляется после перенесенных заболеваний: гриппа, ангины, воспаления легких, обострения ревматизма и т. п. На основании сопоставления синоптических ситуаций с реакциями организма (биоклиматограмма) стало известно, что наиболее чувствительны к метеофакторам больные с сердечно-сосудистой и легочной недостаточностью по причине возникновения у них спастических состояний.

Механизмы возникновения метеопатических реакций недостаточно ясны. Полагают, что они могут иметь разную природу: от биохимической до физиологической. При этом известно, что местами координации реакций организма на внешние физические факторы являются высшие вегетативные центры головного мозга. С помощью лечебных и особенно профилактических мероприятий метеолабильным людям можно помочь справиться со своим состоянием.


Ветровой режим . Ветровая характеристика района строительства является основным фактором, определяющим местоположение порта по отношению к городу, районирование и зонирование его территории, взаимное расположение причалов различного технологического назначения. Являясь главным волнообразующим фактором режимные характеристики ветра определяют конфигурацию берегового причального фронта, компоновку акватории порта и внешних оградительных сооружений, трассирование водных подходов к порту.

Как метеорологическое явление ветер характеризуется направлением, скоростью, пространственным распределением (разгоном) и продолжительностью действия.

Направление ветра для целей портостроения и судоходства обычно рассматривают по 8-ми основным румбам.

Скорость ветра измеряется на высоте 10 м над поверхностью воды или суши с осреднением за 10 минут и выражается в метрах в секунду или узлах (knots, 1 узел=1 миля/час=0.514 метров/секунду).

В случае невозможности выполнения указанных требований результаты наблюдений над ветром могут быть откорректированы путем введения соответствующий поправок.

Под разгоном понимают расстояние, в пределах которого направление ветра изменялось не более чем на 30 0 .

Продолжительность действия ветра - период времени, в течение которого направление и скорость ветра находились в пределах определенного интервала.

Основными вероятностными (режимными) характеристиками ветрового потока, используемыми при проектировании морских и речных портов являются:

  • повторяемость направлений и градаций скоростей ветра;
  • обеспеченность скоростей ветра определенных направлений;
  • расчетные скорости ветра, соответствующие заданным периодам повторяемости.

Повторяемость направлений и градаций скоростей ветра рассчитывают по формуле на основе данных наблюдений за длительный (не менее 25 лет) период. При этом исходные данные группируют по 8-ми направлениям и градациям скоростей ветра (обычно через 5 м/с). К одному типу все наблюдения над ветром, при которых направление совпадает с каким-либо из основных румбов или отличается от него не более чем на 22.5 0 . Результаты расчетов сводят в таблицы повторяемости направлений и градаций скоростей ветра (табл.5.2.1), дополненные данными о максимальных скоростях ветра и повторяемостях штилевых ситуаций. Полученные данные являются основой для построения полярной диаграммы - розы повторяемости направлений и градаций скоростей ветра (рис.5.2.1).

Построение розы повторяемости направлений и градаций скоростей ветра выполняют следующим образом. По каждому направлению от центра откладывают векторы повторяемости наименьшей из градаций скоростей ветра. Концы векторов данной градации соединяют линиями, а затем откладывают векторы следующей градации скорости ветра, также соединяя их концы линиями и т.д. В случае отсутствия значения повторяемости в какой-либо из градаций, концы векторов соседних направлений соединяют с последним значением повторяемости данного направления.

Повторяемость, P(V), % , направлений и градаций скоростей ветра

Напр. V, м./с С СВ В ЮВ Ю ЮЗ З СЗ Штиль Сумма
>20 - - 0.04 0.10 - - - 0.01 - 0.15
14-19 0.21 0.04 1.25 2.23 0.15 0.03 0.01 0.49 - 4.41
9-13 1.81 0.52 6.65 6.84 0.55 0.07 0.26 2.21 - 18.91
4-8 5.86 4.56 12.88 3.32 3.13 3.24 1.50 5.56 - 46.05
1-3 3.89 2.32 3.21 3.31 1.92 2.25 1.55 2.27 - 20.72
Штиль - - - - - - - - 9.76 9.76
Сумма 11.77 7.44 24.03 21.80 5.75 5.59 3.32 10.54 9.76 100.00
Макс. - -

Рис.5.2.1. Роза повторяемости направлений и градаций скоростей ветра (а) и максимальных скоростей (б)

По всей совокупности данных наблюдений над ветром также можно определить количество и среднюю непрерывную продолжительность ситуаций, в течение которых скорость ветра была равна или превышала некоторое фиксированное значение (напр. > 5; >10; > 15 м/с и т.д.).

Температура воды и воздуха . При проектировании, строительстве и эксплуатации портов используют сведения о температуре воздуха и воды в пределах их изменения, а также вероятности экстремальных значений. В соответствии с данными о температуре определяются сроки замерзания и вскрытия бассейнов, устанавливается длительность и рабочий период навигации, планируется работа порта и флота. Статистическая обработка многолетних данных о температуре воды и воздуха предусматривает следующие этапы:

Влажность воздуха . Влажность воздуха определяется содержанием в нем водяных паров. Абсолютная влажность - количество водяного пара в воздухе, относительная - отношение абсолютной влажности к ее предельному значению при данной температуре.

Водяной пар поступает в атмосферу в процессе испарения с земной поверхности. В атмосфере водяной пар переносится упорядоченными воздушными течениями и путем турбулентного перемешивания. Под влиянием охлаждения водяной пар в атмосфере конденсируется – образуются облака, а затем и осадки, выпадающие на землю.

С поверхности океанов (361 млн. км 2) в течение года испаряется слой воды толщиной 1423 мм (или 5,14х10 14 т), с поверхности материков (149 млн. км 2) – 423 мм (или 0,63х10 14 т). Количество осадков на материках значительно превышает испарение. Это означает, что значительная масса водяного пара поступает на материки с океанов и морей. С другой стороны, не испарившаяся на материках вода поступает в реки и далее моря и океаны.

Сведения о влажности воздуха учитывают планировании перегрузки и хранения некоторых видов грузов (напр. чай, табак).

Туманы . Возникновение тумана обусловлено превращением паров в мельчайшие водяные капельки при увеличении влажности воздуха. Образование капелек происходит в случае наличия в воздухе мельчайших частиц (пыль, частицы соли, продукты сгорания и т.п.).

Туманом называют совокупность взвешенных в воздухе капель воды или кристаллов льда, ухудшающих дальность видимости до значений менее 1 км. При видимости до 10 км эта совокупность взвешенных капель или кристаллов льда носит название дымки. Наряду с понятием дымки существует понятие мглы, ухудшающей видимость за счет взвешенных в воздухе твердых частиц. В отличие тумана и дымки влажность воздуха в период мглы значительно меньше 100 %.

В зависимости от дальности видимости различают следующие виды тумана и дымки:

  • сильный туман (<50 м);
  • умеренный туман (50-500 м);
  • слабый туман (500-1000 м);
  • сильная дымка (1-2 км);
  • умеренная дымка (2-4 км);
  • слабая дымка (4-10 км).

Туманы оказывают существенное влияние на судоходство и эксплуатацию портов. На реках туманы, как правило, кратковременны и рассеиваются в течение суток. На побережьях морей продолжительность туманов может достигать 2-3 недель. В некоторых портах Балтийского, Черноморского и Дальневосточного бассейнов в году наблюдается до 60-80 дней с туманами. Основными сведениями для портостроения являются среднее и максимальное число дней с туманами, а также периоды времени, в течение которых они наблюдаются.

Осадки . Капли воды и кристаллы льда, выпадающие из атмосферы на земную поверхность, называются осадками. Количество осадков измеряют толщиной слоя жидкой воды, который мог бы образоваться после выпадения осадков на горизонтальную непроницаемую поверхность. Интенсивность осадков – количество (мм) за единицу времени.

В соответствии с формой различают следующие виды осадков:

  • морось – однородные осадки, состоящие из мелких (капель радиусом менее 0,25 мм), не имеющих выраженного направленного движения; скорость падения мороси в неподвижном воздухе не превышает 0,3 м/с;
  • дождь – жидкие водяные осадки, состоящие из капель размером более 0,25 мм (до 2,5-3,2 мм); скорость падения капель дождя достигает 8-10 м/с;
  • снег – твердые кристаллические осадки размером до 4-5 мм;
  • мокрый снег – осадки в виде тающих снежинок;
  • крупа – осадки из ледяных и сильно обзерненных снежинок радиусом до 7,5 мм;
  • град – частицы округлой формы с ледяными прослойками различной плотности, радиус частиц обычно составляет 1-25 мм, отмечены случаи выпадения градин радиусами более 15 см.

Осадки характеризуются количеством (среднегодовой толщиной слоя воды в мм), суммарным, средним и максимальным числом дней в году с дождем, снегом или градом, а также периодами их выпадения. Определяющее значение эти сведения имеют при проектировании и эксплуатации причалов для переработки грузов боящихся влаги, а также для правильного расположения дренажных и ливневых коммуникаций, предохраняющих территорию порта от затопления. В некоторых портах среднегодовое количество осадков (в мм) составляет: Батуми - 2460; Калининград - 700; Санкт-Петербург - 470; Одесса - 310; Баку - 240.

Смерчи – вихри, в которых воздух вращается со скоростью до 100 м/с и более. Диаметр смерча на водной поверхности составляет 50-200 м, видимая высота – 800-1500 м. В связи с влиянием центробежной силы давление воздуха в смерче значительно понижается. Это обуславливает развитие всасывающей силы. Проходя над водной поверхностью смерчи всасывают значительные массы воды.

Контрольные вопросы:

МЕТЕОРОЛОГИЧЕСКИЕ ФАКТОРЫ

физические свойства атмосферы, определяющие погоду и климат (или микроклимат) и оказывающие влияние на состояние организма.

Медицинские термины. 2012

Смотрите еще толкования, синонимы, значения слова и что такое МЕТЕОРОЛОГИЧЕСКИЕ ФАКТОРЫ в русском языке в словарях, энциклопедиях и справочниках:

  • ФАКТОРЫ
    СПРОСА И ПРЕДЛОЖЕНИЯ НЕЦЕНОВЫЕ - см. НЕЦЕНОВЫЕ ФАКТОРЫ СПРОСА И ПРЕДЛОЖЕНИЯ …
  • ФАКТОРЫ в Словаре экономических терминов:
    ПРОИЗВОДСТВА ПЕРВИЧНЫЕ -см. ПЕРВИЧНЫЕ ФАКТОРЫ …
  • ФАКТОРЫ в Словаре экономических терминов:
    ПРОИЗВОДСТВА ОСНОВНЫЕ - см ПЕРВИЧНЫЕ ФАКТОРЫ ПРОИЗВОДСТВА …
  • ФАКТОРЫ в Словаре экономических терминов:
    ПРОИЗВОДСТВА - используемые в производстве ресурсы, от которых в определяющей степени зависит объем выпускаемой продукции. К ним относятся земля, труд, …
  • ФАКТОРЫ в Словаре экономических терминов:
    ИНСТИТУЦИОНАЛЬНЫЕ - см ИНСТИТУЦИОНАЛЬНЫЕ ФАКТОРЫ …
  • ФАКТОРЫ в Словаре экономических терминов:
    - условия, причины, параметры, показатели, оказывающие влияние на экономический процесс и результат этого процесса. Например, к Ф., влияющим на производительность …
  • МЕТЕОРОЛОГИЧЕСКИЕ в Большом российском энциклопедическом словаре:
    МЕТЕОРОЛОЃИЧЕСКИЕ ЭЛЕМЕНТЫ, характеристики состояния атмосферы и атм. процессов: темп-ра, давление, влажность воздуха, ветер, облачность и осадки, дальность видимости, туманы, грозы …
  • ФАКТОРЫ РИСКА УХУДШЕНИЯ ЗДОРОВЬЯ в Энциклопедии трезвого образа жизни:
    — факторы поведенческого, биологического, генетического, социального характера, факторы связанные с загрязнением окружающей среды, природно-климатическими условиями, которые в наибольшей степени увеличивают …
  • АНТРОПОГЕННЫЕ ФАКТОРЫ СРЕДЫ в Медицинских терминах:
    (антропо- + греч. -genes порожденный; син.: антропоургические факторы среды, хозяйственно-бытовые факторы среды) факторы окружающей среды, возникновение которых обусловлено деятельностью человека, …
  • ТЕРМОМЕТРЫ МЕТЕОРОЛОГИЧЕСКИЕ
    метеорологические, группа термометров жидкостных специальной конструкции, предназначенных для метеорологических измерений главным образом на метеорологических станциях. Различные Т. м. в зависимости …
  • МЕТЕОРОЛОГИЧЕСКИЕ СЪЕЗДЫ в Большой советской энциклопедии, БСЭ:
    съезды, научные собрания специалистов в области метеорологии. В России 1-й и 2-й М. с. состоялись в Петербурге в …
  • МЕТЕОРОЛОГИЧЕСКИЕ ПРИБОРЫ в Большой советской энциклопедии, БСЭ:
    приборы, приборы и установки для измерения и регистрации значений метеорологических элементов. М. п. предназначены для работы в естественных …
  • МЕТЕОРОЛОГИЧЕСКИЕ ОРГАНИЗАЦИИ в Большой советской энциклопедии, БСЭ:
    организации международные, организации, создаваемые для международного сотрудничества в области метеорологии. Основные М. о. - Всемирная метеорологическая организация (ВМО). Наряду с …
  • МЕТЕОРОЛОГИЧЕСКИЕ ЖУРНАЛЫ в Большой советской энциклопедии, БСЭ:
    журналы (точнее метеорологические и климатологические журналы), периодические научные издания, освещающие вопросы метеорологии, климатологии и гидрологии. В СССР наиболее известными и …
  • АТМОСФЕРА ЗЕМЛИ в Большой советской энциклопедии, БСЭ:
    Земли (от греч. atmos - пар и sphaira - шар), газовая оболочка, окружающая Землю. А. принято считать ту область вокруг …
  • СТАНЦИИ МЕТЕОРОЛОГИЧЕСКИЕ
    см. Метеорологические …
  • ПРОМЫШЛЕННЫЕ ФАКТОРЫ ОПАСНОСТИ в Словаре Кольера:
    любые факторы, связанные с производством и способные оказать неблагоприятное влияние на здоровье человека. Условия окружающей среды, вещества или нагрузки, связанные …
  • БИОДЕТЕРМИНИЗМ в Словаре Терминов гендерных исследований.:
    (биологический детерминизм) - принцип рассмотрения явлений, при котором определяющими для характеристик человека, в данном случае гендерных или половых, считаются биологические …
  • ТОЛЬ ЭДУАРД
    Толь (Эдуард, барон) - зоолог, геолог и путешественник, родился в 1858 г. в Ревеле, изучал с 1877 по 1882 г. …
  • РОССИЯ, РАЗД. МЕТЕОРОЛОГИЯ в Краткой биографической энциклопедии:
    Ретеорологические наблюдения в России начались, по словам первого их историка, К.С. Веселовского, - около средины XVIII столетия: для Петербурга …
  • ПРЖЕВАЛЬСКИЙ НИКОЛАЙ МИХАЙЛОВИЧ в Краткой биографической энциклопедии:
    Пржевальский (Николай Михайлович) - известный русский путешественник, генерал-майор. Родился в 1839 г. Отец его, Михаил Кузьмич, служил в русской армии. …
  • ЖЕЛЕЗНОВ НИКОЛАЙ ИВАНОВИЧ в Краткой биографической энциклопедии:
    Железнов (Николай Иванович 1816 - 1877) - выдающийся ботаник и агроном. Среднее образование он получил в тогдашнем горном корпусе, а …
  • РАК ОБОДОЧНОЙ И ПРЯМОЙ КИШОК в Медицинском словаре.
  • в Медицинском словаре:
  • в Медицинском словаре:
  • БОЛЕЗНЬ ЯЗВЕННАЯ ПЕПТИЧЕСКАЯ в Медицинском словаре:
  • АНЕМИЯ ГЕМОЛИТИЧЕСКАЯ в Медицинском словаре:
  • РАК ОБОДОЧНОЙ И ПРЯМОЙ КИШОК в Медицинском большом словаре.
  • НЕДОСТАТОЧНОСТЬ ПОЧЕЧНАЯ ОСТРАЯ
    Острая почечная недостаточность (ОПН) - внезапно возникшее патологическое состояние, характеризующееся нарушением функции почек с задержкой выведения из организма продуктов азотистого …
  • НЕДОСТАТОЧНОСТЬ ПЕЧЁНОЧНОКЛЕТОЧНАЯ в Медицинском большом словаре:
    Печёночноклеточная недостаточность (ПКН) - термин, объединяющий различные нарушения функций печени, варьирующие от лёгких субклинических проявлений до печёночной энцефалопатии и комы. …
  • БОЛЕЗНЬ ЯЗВЕННАЯ ПЕПТИЧЕСКАЯ в Медицинском большом словаре:
    Термины язва, язвенная болезнь, пептическая язвенная болезнь применяют по отношению к группе заболеваний ЖКТ, характеризующихся образованием участков деструкции слизистой оболочки …
  • АНЕМИЯ ГЕМОЛИТИЧЕСКАЯ в Медицинском большом словаре:
    Гемолитйческие анемии - большая группа анемий, характеризующихся снижением средней продолжительности жизни эритроцитов (в норме 120 дней). Гемолиз (разрушение эритроцита) может …
  • ФАКТОРНЫЙ АНАЛИЗ в Большой советской энциклопедии, БСЭ:
    анализ, раздел статистического анализа многомерного,. объединяющий методы оценки размерности множества наблюдаемых переменных посредством исследования структуры ковариационных или корреляционных матриц. …
  • РАДИОМЕТЕОРОЛОГИЯ в Большой советской энциклопедии, БСЭ:
    наука, в которой изучается, с одной стороны, влияние метеорологических условий в тропосфере и стратосфере на распространение радиоволн (главным образом УКВ), …
  • МЕТЕОРОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ в Большой советской энциклопедии, БСЭ:
    сельскохозяйственная, агрометеорология, прикладная метеорологическая дисциплина, изучающая метеорологические, климатические и гидрологические условия, имеющие значение для сельского хозяйства, в их взаимодействии с …
  • МЕТЕОРОЛОГИЯ в Большой советской энциклопедии, БСЭ:
    (от греч. meteoros - поднятый вверх, небесный, meteora - атмосферные и небесные явления и...логия) , наука об атмосфере …
  • МЕТЕОРОЛОГИЧЕСКАЯ ОБСЕРВАТОРИЯ в Большой советской энциклопедии, БСЭ:
    обсерватория, научно-техническое учреждение, в котором ведут метеорологические наблюдения и исследования метеорологического режима на территории области, края, республики, страны. Некоторые …
  • КОСМОНАВТИКА в Большой советской энциклопедии, БСЭ:
    (от космос и греч. nautikе искусство мореплавания, кораблевождение), полеты в космическом пространстве; совокупность отраслей науки и техники, обеспечивающих освоение …
  • ИСПАРИТЕЛЬ (В МЕТЕОРОЛОГИИ) в Большой советской энциклопедии, БСЭ:
    эвапорометр (в метеорологии), прибор для измерения испарения с поверхности водоёмов и почвы. Для измерения испарения с поверхности водоёмов в СССР …
  • ИСКУССТВЕННЫЕ СПУТНИКИ ЗЕМЛИ в Большой советской энциклопедии, БСЭ:
    Спутники Земли (ИСЗ), космические летательные аппараты, выведенные на орбиты вокруг Земли и предназначенные для решения научных и прикладных задач. Запуск …
  • ДИНАМИКА ЧИСЛЕННОСТИ ЖИВОТНЫХ в Большой советской энциклопедии, БСЭ.
  • ГИДРОМЕТЕОРОЛОГИЧЕСКАЯ СТАНЦИЯ в Большой советской энциклопедии, БСЭ:
    станция, учреждение, ведущее метеорологические и гидрологические наблюдения над состоянием погоды, режимом океанов, морей, рек, озёр и болот. В зависимости …
  • БИОЛОГИЯ в Большой советской энциклопедии, БСЭ:
    (от био... и...логия) , совокупность наук о живой природе. Предмет изучения Б. - все проявления жизни: строение и …
  • АЭРОЛОГИЧЕСКИЕ ПРИБОРЫ в Большой советской энциклопедии, БСЭ:
    приборы, приборы для измерений в свободной атмосфере на различных высотах температуры, давления и влажности воздуха, а также солнечной радиации, высоты …
  • АНАЛИЗ ХОЗЯЙСТВЕННОЙ ДЕЯТЕЛЬНОСТИ в Большой советской энциклопедии, БСЭ:
    хозяйственной деятельности социалистических предприятий (экономический анализ работы предприятий), комплексное изучение хозяйственной деятельности предприятий и их объединений с целью повышения её …
  • ХАРЬКОВСКАЯ ГУБЕРНИЯ в Энциклопедическом словаре Брокгауза и Евфрона:
    I находится между 48°З1" и 51°16" с. ш. и между 33°50" и 39°50" в. д.; она представляет собой удлиненную с …
  • ФИЗИЧЕСКАЯ ОБСЕРВАТОРИЯ в Энциклопедическом словаре Брокгауза и Евфрона:
    по своему названию "физическая" обсерватория должна бы иметь своей целью всевозможные физические наблюдения, среди которых метеорологические составляли бы только одну …

Главными метеорологическими климатообразующими факторами являются масса и химический состав атмосферы.

Масса атмосферы определяет ее механическую и тепловую инерцию, ее возможности как теплоносителя, способного передавать тепло от нагретых областей к охлажденным. Без атмосферы на Земле существовал бы «лунный климат», т.е. климат лучистого равновесия.

Атмосферный воздух представляет собой смесь газов, одни из которых имеют почти постоянную концентрацию, другие – переменную. Кроме того, в атмосфере содержатся различные жидкие и твердые аэрозоли, которые также имеют существенное значение в формировании климата.

Основными составляющими атмосферного воздуха являются азот, кислород и аргон. Химический состав атмосферы остается постоянным примерно до высоты 100 км, выше начинает сказываться гравитационное разделение газов и относительное содержание более легких газов увеличивается.

Для климата особенно важны переменные по содержанию термодинамически активные примеси, оказывающие большое влияние на многие процессы в атмосфере, такие как вода, диоксид углерода, озон, диоксид серы и диоксид азота.

Яркий пример термодинамически активной примеси – вода в атмосфере. Концентрация этой воды (удельная влажность, к которой в облаках добавляется удельная водность) весьма изменчива. Водяной пар вносит ощутимый вклад в плотность воздуха, стратификацию атмосферы и особенно во флуктуации и турбулентные потоки энтропии. Он способен конденсироваться (или сублимироваться) на имеющихся в атмосфере частицах (ядрах), образуя облака и туманы, а также выделяя большие количества тепла. Водяной пар и особенно облачность резко влияют на потоки коротковолнового и длинноволнового излучений в атмосфере. Водяной пар обусловливает и парниковый эффект, т.е. способность атмосферы пропускать солнечную радиацию и поглощать тепловое излучение подс-тилающей поверхности и нижележащих атмосферных слоев. Благодаря этому температура в атмосфере растет с глубиной. Наконец, в облаках может иметь место коллоидальная неустойчивость, вызывающая коагуляцию облачных частиц и выпадение осадков.

Другой важной термодинамически активной примесью является углекислый газ, или диоксид углерода. Он вносит существенный вклад в парниковый эффект, поглощая и переизлучая энергию длинноволновой радиации. В прошлом могли происходить значительные колебания в содержании углекислого газа, что должно было отразиться на климате.

Влияние твердых искусственных и естественных аэрозолей, содержащихся в атмосфере, еще недостаточно хорошо изучено. Источниками твердых аэрозолей на Земле являются пустыни и полупустыни, области активной вулканической деятельности, а также промышленно развитые районы.

Океан также поставляет незначительное количество аэрозолей – частичек морской соли. Крупные частицы сравнительно быстро выпадают из атмосферы, тогда как самые мелкие остаются в атмосфере длительное время.

Аэрозоль влияет на потоки лучистой энергии в атмосфере несколькими путями. Во-первых, частицы аэрозоля облегчают образование облаков и тем самым увеличивают альбедо, т.е. долю отраженной и безвозвратно потерянной для климатической системы солнечной энергии. Во-вторых, аэрозоль рассеивает значительную часть солнечной радиации, так что часть рассеянной радиации (очень небольшая) также теряется для климатической системы. Наконец, некоторая часть солнечной энергии поглощается аэрозолями и переизлучается как к поверхности Земли, так и в космос.

В течение долгой истории Земли количество естественного аэрозоля существенно колебалось, поскольку известны периоды повышенной тектонической активности и, наоборот, периоды отно-сительного затишья. Были и такие периоды в истории Земли, когда в жарких сухих климатических поясах располагались значительно более обширные массивы суши и, наоборот, в этих поясах преобладала океаническая поверхность. В настоящее время, как и в случае углекислого газа, все большее значение приобретает искусственный аэрозоль – продукт хозяйственной деятельности человека.

К термодинамически активным примесям относится также озон. Он присутствует в слое атмосферы от поверхности Земли до высоты 60–70 км. В самом нижнем слое 0–10 км его содер-жание незначительно, затем оно быстро увеличивается и достигает максимума на высоте 20–25 км. Далее содержание озона быстро уменьшается, и на высоте 70 км оно уже в 1000 раз меньше, чем даже у поверхности. Такое вертикальное распределение озона связано с процессами его образования. Озон образуется в основном в результате фотохимических реакций под действием несущих высокую энергию фотонов, принадлежащих крайней ультрафиолетовой части солнечного спектра. При этих реакциях появляется атомарный кислород, который соединяется затем с молекулой кислорода и образует озон. Одновременно происходят реакции распада озона при поглощении им солнечной энергии и при соударениях его молекул с атомами кислорода. Эти процессы вместе с процессами диффузии, перемешивания и переноса приводят к описанному выше равновесному вертикальному профилю содержания озона.

Несмотря на столь незначительное содержание, его роль исключительно велика и не только для климата. Благодаря исключительно интенсивному поглощению лучистой энергии при процессах его образования и (в меньшей степени) распадания, в верхней части слоя максимального содержания озона – озоносферы – происходит сильное разогревание (максимум содержания озона находится несколько ниже, куда он попадает в результате диффузии и перемешивания). Из всей солнечной энергии, падающей на верхнюю границу атмосферы, озон поглощает около 4%, или 6·10 27 эрг/сут. При этом озоносфера поглощает ультрафиолетовую часть излучения с длиной волны менее 0,29 мкм, которая оказывает губительное действие на живые клетки. При отсутствии этого озонного экрана, по-видимому, не могла бы возникнуть жизнь на Земле, по крайней мере в известных нам формах.

Океан, являющийся неотъемлемой частью климатической системы, играет в ней исключительно важную роль. Первичным свойством океана, так же как и атмосферы, является масса. Однако для климата существенно и то, на какой части поверхности Земли эта масса размещается.

Среди термодинамически активных примесей в океане можно назвать растворенные в воде соли и газы. Количество растворенных солей влияет на плотность морской воды, которая при данном давлении зависит, таким образом, не только от температуры, но и от солености. Это значит, что соленость наряду с температурой определяет плотностную стратификацию, т.е. делает ее в одних случаях устойчивой, а в других приводит к конвекции. Нелинейная зависимость плотности от температуры может приводить к любопытному явлению, получившему название уплотнения при смешении. Температура максимальной плотности пресной воды равна 4°С, более теплая и более холодная вода имеет меньшую плотность. При перемешивании двух объемов таких более легких вод смесь может оказаться более тяжелой. Если ниже окажется вода с меньшей плотностью, то перемешанная вода может начать погружаться. Однако область температур, при которых это явление происходит, в пресной воде очень узкая. Наличие растворенных солей в океанской воде увеличивает вероятность такого явления.

Растворенные соли изменяют многие физические характеристики морской воды. Так, коэффициент термического расширения воды увеличивается, а теплоемкость при постоянном давлении уменьшается, понижается температура замерзания и максимальной плотности. Соленость несколько понижает упругость насыщающего пара над водной поверхностью.

Важная способность океана – возможность растворять большое количество углекислого газа. Это делает океан емким резервуаром, который в одних условиях может поглощать избыток атмос-ферного углекислого газа, в других – выделять углекислый газ в атмосферу. Значение океана как резервуара углекислоты еще более возрастает из-за существования в океане так называемой карбонатной системы, которая подключает огромные количества углекислого газа, содержащегося в современных отложениях известняков.


Оглавление
Климатология и метеорология
ДИДАКТИЧЕСКИЙ ПЛАН
Метеорология и климатология
Атмосфера, погода, климат
Метеорологические наблюдения
Применение карт
Метеорологическая служба и Всемирная Метеорологическая Организация (ВМО)
Климатообразующие процессы
Астрономические факторы
Геофизические факторы
Метеорологические факторы
О солнечной радиации
Тепловое и лучистое равновесие Земли
Прямая солнечная радиация
Изменения солнечной радиации в атмосфере и на земной поверхности
Явления, связанные с рассеянием радиации
Суммарная радиация, отражение солнечной радиации, поглощенная радиация, ФАР, альбедо Земли
Излучение земной поверхности
Встречное излучение или противоизлучение
Радиационный баланс земной поверхности
Географическое распределение радиационного баланса
Атмосферное давление и барическое поле
Барические системы
Колебания давления
Ускорение воздуха под действием барического градиента
Отклоняющая сила вращения Земли
Геострофический и градиентный ветер
Барический закон ветра
Фронты в атмосфере
Тепловой режим атмосферы
Тепловой баланс земной поверхности
Суточный и годовой ход температуры на поверхности почвы
Температуры воздушных масс
Годовая амплитуда температуры воздуха
Континентальность климата
Облачность и осадки
Испарение и насыщение
Влажность
Географическое распределение влажности воздуха
Конденсация в атмосфере
Облака
Международная классификация облаков
Облачность, ее суточный и годовой ход
Осадки, выпадающие из облаков (классификация осадков)
Характеристика режима осадков
Годовой ход осадков
Климатическое значение снежного покрова
Химия атмосферы
Химический состав атмосферы Земли
Химический состав облаков

Мно­голетние и годовые закономерности распределения атмосферных осад­ков, температуры воздуха, влажно­сти. Климатические (метеорологические) факторы во многом определяют особенности режима подземных вод. Заметное воздействие на грунтовые воды оказывают температура воздуха, атмосферные осадки, испарение, а также дефицит влажности воздуха и атмосферное давление. В своей совокупности воздействия они определяют размеры и сроки питания подземных вод и придают их режиму характерные черты.

Под климатом в метеорологии понимают закономерную смену атмосферных процессов, возникающих в результате сложного воздействия солнечной радиации на земную поверхность и атмосферу . Основными показателями климата можно считать:

Радиационный баланс Земли;

Процессы циркуляции атмосферы;

Характер подстилающей поверхности.

Космогенные факторы. Изменение климата во многом зависит от величины солнечной радиации , она определяет не только тепловой баланс Земли но и распределение других метеорологических элементов. Годовые суммы тепла радиации, приходящиеся на территорию Средней Азии и Казахстан составляют от 9000 до 12000 тыс. калл.

М.С.Эйгенсон (1957), Н.С. Токарев (1950), В.А. Коробейников (1959) отмечают закономерную связь колебаний уровня грунтовых вод с изменениями солнечной энергии. При этом установлены 4, 7, 11-летние циклы. М.С.Эйгенсон отмечает в среднем 1 раз в 11 лет число пятен (и факелов) достигает своего наибольшего количества. После этой эпохи максимума оно относительно медленно уменьшается с тем, чтобы достигнуть примерно через 7 лет своего наименьшего значения. После достижения эпохи 11-летнего цикличного минимума число пятен вновь закономерно возрастает, а именно в среднем через 4 года после минимума вновь наблюдается очередной максимум 11-летнего цикла и т.д.

Массовый корреляционный анализ режима подземных вод с различными индексами солнечной активности показал в целом низкие корреляционные связи. Лишь изредка коэффициент этой связи достигает 0,69. Сравнительно лучшие связи устанавливаются с индексом геомагнитной возмущенности Солнца.

Многими исследователями установлены многолетние закономерности атмосферной циркуляции . Ими выделяются две основные формы переноса тепла и влаги: зональная и меридиональная. При этом меридиональный перенос определяется наличием градиента температур воздуха между экватором и полюсом, а зональный – градиентом температур между океаном и материком. В частности, отмечается, что количество атмосферных осадков возрастает для Европейской части СНГ, Казахстана и Средней Азии при западном типе циркуляции, обеспечивающем приток влаги с Атлантики, и убывает по сравнению с нормой при восточном типе циркуляции.

Палеогеографические данные показывают, что на протяжении жизни Земли климатические условия подвергались неоднократным и значительным изменениям. Изменения климата происходят в результате многих причин: смещения оси вращения и перемещения полюсов Земли, изменения солнечной активности в прошлое геологическое время, прозрачности атмосферы и др. Одной из серьезных причин его изменения являются также крупные тектонические и экзогенные процессы, изменяющие облик (рельеф) земной поверхности.

Температура воздуха. На территории СНГ можно выделить три температурные провинции.

Первая – провинция с отрицательной среднегодовой температурой. Она занимает значительную часть азиатской территории. Здесь наблюдается широкое развитие многолетнемерзлых пород (вода находится в твердом состоянии и только в теплый летний период образует временные потоки).

Вторая провинция характеризуется положительной среднегодовой температурой воздуха и наличием сезонно мерзлоты почвы в зимний период (Европейская часть, юг Западной Сибири, Приморье, Казахстан и часть территории Средней Азии). В период промерзания почв прекращается питание грунтовых вод за счет атмосферных осадков, в то время как сток их еще происходит.

Третья провинция имеет положительную температуру воздуха в самый холодный период года. Она охватывает юг Европейской части СНГ, Черноморское побережье, Закавказье, юг Туркменской и часть Узбекской республики, а также Таджикистан (питание происходит в течение всего года).

Кратковременные повышения температуры в зимний период, создающие оттепели, вызывают резкие повышения уровня и увеличение дебита подземных вод.

Изменение температуры воздуха воздействует на грунтовые воды не непосредственно, а через породы зоны аэрации и воды этой зоны.

Механизм воздействия температуры воздуха на режим грунтовых вод весьма разнообразен и сложен. Наблюдениями установлены закономерные ритмичные колебания температуры, амплитуда которых постепенно уменьшается. Максимальная температура подземных вод с глубиной постепенно убывает до зоны постоянных температур. Минимальная температура наоборот с глубиной возрастает. Глубина залегания пояса постоянных температур зависит от литологического состава пород (зоны аэрации) и глубины залегания подземных вод.

Атмосферные осадки – являются одним из главнейших режимообразующих факторов. Известно, что атмосферные осадки расходуются на поверхностный и склоновый стоки, испарение и инфильтрацию (питают подземные воды).

Величина поверхностного стока зависит от климатических и других условий и колеблется от нескольких процентов до половины годовой суммы атмосферных осадков (в некоторых случаях и выше).

Наиболее трудно определяется величина испарения , которая также зависит от большого числа различных факторов (дефицит влажности воздуха, характер растительности, сила ветра, литологический состав, состояние и цвет почвы, и многие др.).

Из той части атмосферных осадков, которые проникают в зону аэрации, часть не достигает поверхности грунтовых вод, а расходуется на физическое испарение и транспирацию растениями.

Лизиметрическими исследованиями (Гордеев, 1959) были получены данные по лизиметрам, заложенным на разную глубину:

А.В.Лебедев (1954, 1959) расчетным путем установил зависимость величины питания грунтовых вод или инфильтрации и испарения от мощности зоны аэрации. Данные инфильтрации характеризуют период максимального питания (весна), а данные испарения – минимального (лето).

Просачивание воды в зоне аэрации зависит от интенсивности дождя, недостатка насыщения и полной водоотдачи, коэффициента фильтрации и достигает наибольшей глубины при более длительном дождевании. Прекращение дождя замедляет процесс продвижения воды, в таких случаях возможно образование «верховодки».

Таким образом, наилучшие условия при питании грунтовых вод существуют на небольших глубинах в основном в весеннее время при снеготаянии и осенью в период продолжительного выпадения осадков.

Воздействие атмосферных осадков на грунтовые воды вызывает изменение запасов, химического состава и температуры.

Несколько слов о снежном покрове, который около 10 см на юге, 80-100 см на севере и 100-120 см на Крайнем Севере, Камчатке. Наличие запасов воды в снеге еще не указывает на величину питания грунтовых вод. Существенную роль здесь играет мощность сезонно промерзающего слоя и продолжительность его оттаивания, величина испарения и расчлененность рельефа.

Испарение. Величина испарения зависит от очень большого числа факторов (влажность воздуха, ветра, температуры воздуха, радиации, неровности и цвета поверхности земли, а также наличия растительности и др.).

В зоне аэрации происходит испарение как воды, поступающей с поверхности в результате инфильтрации, так и воды с капиллярной каймы. В результате испарения удаляется вода, еще не достигшая грунтовых вод, и величина их питания уменьшается.

Влияние испарения на химический состав воды является сложным процессом. Состав воды в результате испарения (в аридной зоне) не изменяется, т. к. вода оставляет соли при испарении на уровне капиллярной каймы. При последующей инфильтрации подземные воды обогащаются наиболее легко растворимыми солями, возрастает их общая минерализация и содержания отдельных компонентов.

Чем больше мощность зоны аэрации, тем меньше испарение (с глубиной). На глубине более 4-5 м в пористых или слаботрещиноватых породах испарение становится весьма малым. Ниже этой глубины (до 40 м и более) процесс испарения практически постоянен (0,45 -0,5 мм в год). С глубиной амплитуда колебания уровня подземных вод затухает, что можно объяснить рассредоточением процесса питания во времени и балансированием его подземным стоком.

В Подмосковье при песчаном составе зоны аэрации и глубинах залегания подземных вод в среднем 2-3 м летние осадки достигают грунтовые воды лишь при величине дождевых осадков выше 40 мм или при продолжительных моросящих дождях.

Атмосферное давление. Увеличение атмосферного давления приводит к снижению уровней воды в скважинах и дебитов источников, а уменьшение, наоборот, к их уменьшению.

Отношение изменений уровня подземных вод Δh, вызванных соответствующим изменением атмосферного давления Δр называется барометрической эффективностью (Jacob,1940).

Параметр В, равный

Где γ – плотность воды (равная 1 г/см 3 для пресных вод),

характеризует упругие и фильтрационные свойства горизонта, а также степень его изоляции от атмосферы (В=0,3-0,8).

Изменение атмосферного давления может вызывать изменение уровня грунтовых вод до 20-30 см. Кроме того, порывы ветра, создавая разряжение атмосферного давления, могут приводить к подъему уровня до 5 см.

Рассмотренные выше режимообразующие климатические факторы не исчерпывают перечня многочисленных природных процессов, воздействующих на режим подземных вод.

Осн.: 3

Доп.: 6

Контрольные вопросы:

Что такое климат?

2. Каковы три основных показателя климата?

3. Перечислите метеорологические (климатические) режимообразующие факторы.

4. Каково влияние на режим подземных вод космогенных факторов?

5. Каковы многолетние закономерности атмосферной циркуляции, основные формы переноса тепла и влаги?

6. Дайте характеристику температурных провинций на территории СНГ.

7. От чего зависит глубина залегания пояса постоянных температур подземных вод?

8. Воздействие атмосферных осадков на грунтовые воды.

9. Влияние испарения на химический состав воды.

10. От чего зависит величина питания грунтовых вод или инфильтрация и испарение?

11. Как изменяется уровень воды в скважинах и дебит источников в зависимости от атмосферного давления?

12. Какой параметр называется барометрической эффективностью и какие свойства горизонта подземных вод он характеризует?

13. Может ли изменение атмосферного давления вызывать изменение уровня грунтовых вод?


Похожая информация.




error: Контент защищен !!